Part Number Hot Search : 
JX322 22100 MC1416BP 000MT UF540 RPGBSM02 92B0504 NDY1205C
Product Description
Full Text Search
 

To Download IRGB4061DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97189B
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
* * * * * * * * * * Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 S short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
IRGB4061DPBF
VCES = 600V IC = 18A, TC = 100C
G E
tSC 5s, TJ(max) = 175C
n-channel
C
VCE(on) typ. = 1.65V
Benefits
* High Efficiency in a wide range of applications * Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses * Rugged transient Performance for increased reliability * Excellent Current sharing in parallel operation * Low EMI
G Gate
E C G TO-220AB
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Max.
600 36 18 72 72 36 18 72 20 30 206 103 -55 to +175
Units
V
c e
A
Continuous Gate-to-Emitter Voltage
V W
C
Thermal Resistance
Parameter
RJC (IGBT) RJC (Diode) RCS RJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
--- --- --- ---
Typ.
--- --- 0.50 80
Max.
0.73 2.00 --- ---
Units
C/W
1
www.irf.com
09/06/07
IRGB4061DPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)CES
V(BR)CES/TJ
Min.
600 -- -- -- -- 4.0 -- -- -- -- -- -- --
Typ.
-- 0.40 1.65 2.05 2.15 -- -18 12 2.0 550 2.30 1.6 --
Max. Units
-- -- 1.95 -- -- 6.5 -- -- 25 -- 3.30 -- 100 nA V V V
Conditions
VGE = 0V, IC = 100A
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
V/C VGE = 0V, IC = 1mA (25C-175C) IC = 18A, VGE = 15V, TJ = 25C V IC = 18A, VGE = 15V, TJ = 150C IC = 18A, VGE = 15V, TJ = 175C VCE = VGE, IC = 500A
f
Ref.Fig CT6 CT6 5,6,7 9,10,11
VCE(on) VGE(th)
VGE(th)/TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/C VCE = VGE, IC = 1.0mA (25C - 175C) S VCE = 50V, IC = 18A, PW = 80s A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175C IF = 18A IF = 18A, TJ = 175C VGE = 20V
8
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Typ.
35 10 15 95 350 445 40 25 105 25 285 570 855 40 25 120 40 1043 87 32
Max. Units
55 15 25 140 405 545 55 35 120 35 -- -- -- -- -- -- -- -- -- -- pF VGE = 0V VCC = 30V ns J ns J nC IC = 18A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 18A, VCC = 400V, VGE = 15V RG = 22, L = 200H, LS = 150nH
Energy losses include tail & diode reverse recovery
CT4
IC = 18A, VCC = 400V, VGE = 15V RG = 22, L = 200H, LS = 150nH
CT4
IC = 18A, VCC = 400V, VGE=15V RG=22, L=200H, LS=150nH, TJ = 175C IC = 18A, VCC = 400V, VGE = 15V RG = 22, L = 200H, LS = 150nH TJ = 175C
fA
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 175C, IC = 72A VCC = 480V, Vp =600V Rg = 22, VGE = +15V to 0V
4 CT2
FULL SQUARE 5 -- -- -- -- 260 100 23 -- -- -- -- s J ns A
VCC = 400V, Vp =600V Rg = 22, VGE = +15V to 0V TJ = 175C VCC = 400V, IF = 18A VGE = 15V, Rg = 22, L =200H, Ls = 150nH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 100H, RG = 22. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGB4061DPBF
40 35 30 25 20 15 10 5 0 0 20 40 60 80 100 120 140 160 180 T C (C)
0 0 20 40 60 80 100 120 140 160 180 T C (C)
Ptot (W)
250
200
150
IC (A)
100
50
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10sec 10
IC (A)
IC (A)
100sec 1 1msec Tc = 25C Tj = 175C Single Pulse 0.1 1 10 100 VCE (V) 1000 10000 DC
10
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25C, TJ 175C; VGE =15V
90 80 70 60
ICE (A)
Fig. 4 - Reverse Bias SOA TJ = 175C; VGE =15V
90 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
80 70 60
ICE (A)
50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 6 7 8
50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 6 7 8
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
www.irf.com
3
IRGB4061DPBF
90 80 70 60
ICE (A)
100
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
IF (A)
80
-40c 25C 175C
50 40 30 20 10 0 0 1 2 3 4 VCE (V) 5 6 7 8
60
40
20
0 0.0 1.0 2.0 3.0 4.0 5.0 VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175C; tp = 80s
20 18 16 14
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80s
20 18 16 14
VCE (V)
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 9.0A ICE = 18A ICE = 36A
12 10 8 6 4 2 0
ICE = 9.0A ICE = 18A ICE = 36A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40C
20 18 16 14
VCE (V) ICE (A)
Fig. 10 - Typical VCE vs. VGE TJ = 25C
180 160 140 120 T J = 25C T J = 175C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 9.0A ICE = 18A ICE = 36A
100 80 60 40 20 0 0 5 10 VGE (V) 15 20
15
20
Fig. 11 - Typical VCE vs. VGE TJ = 175C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s
4
www.irf.com
IRGB4061DPBF
1400 1200
Swiching Time (ns)
1000
1000
Energy (J)
800 600 400 200 0 5 10 15
EOFF
tdOFF 100 tF tdON tR 10
EON
20
25
30
35
40
5
10
15
20
25 IC (A)
30
35
40
45
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 22; VGE = 15V
900 800 700 600
Energy (J)
Fig. 14 - Typ. Switching Time vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 22; VGE = 15V
1000
EOFF
Swiching Time (ns)
tdOFF 100 tdON
500 400 300 200 100 0 0 25 50 75 100 125 EON
tF tR 10 0 25 50 75 100 125 RG ()
Rg ()
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 18A; VGE = 15V
35 30 25
IRR (A)
Fig. 16 - Typ. Switching Time vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 18A; VGE = 15V
40 35 30 25
RG = 10 RG = 22
IRR (A)
20 15 10 5 0 0 10
RG = 47 RG = 100
20 15 10 5 0
20 IF (A)
30
40
0
25
50
75
100
125
RG ()
Fig. 17 - Typ. Diode IRR vs. IF TJ = 175C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 175C
www.irf.com
5
IRGB4061DPBF
40 35 30
1600 1400 36A 1200
QRR (C)
10 22
25
IRR (A)
20 15 10 5 0 0 500 1000 1500 diF /dt (A/s)
1000 800 100 600 400 0
47 18A
9.0A
500
1000
1500
diF /dt (A/s)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 18A; TJ = 175C
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175C
120 110 100 90 80 70 60 50 40 30 20 8 10 12 14 16 18 VGE (V)
Current (A)
400 350 300
Energy (J)
20
RG = 10 RG = 22
18 16 14
Time (s)
30 40
250 200 150 100 50 0 0 10 20 IF (A) RG = 100 RG = 47
12 10 8 6 4 2 0
Fig. 21 - Typ. Diode ERR vs. IF TJ = 175C
10000
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25C
16
VGE, Gate-to-Emitter Voltage (V)
14 12 10 8 6 4 2 0
V CES = 300V V CES = 400V
Capacitance (pF)
1000
Cies
100
Coes Cres
10 0 20 40 60 80 100 VCE (V)
0
5
10
15
20
25
30
35
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 18A; L = 600H
6
www.irf.com
IRGB4061DPBF
1 D = 0.50
Thermal Response ( Z thJC )
0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE )
J J 1 R1 R1 2 R2 R2 C 2
Ri (C/W) i (sec) 0.3193 0.000273 0.4104 0.004525
1
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01
J
R1 R1 J 1 2
R2 R2
R3 R3 3 C 3
Ri (C/W) i (sec) 0.244 0.000084 1.102 0.655 0.001770 0.013544
1
2
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4061DPBF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io de cl amp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400H D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGB4061DPBF
600 500
90% ICE
30 25 20 15 tf
5% ICE
600 500 tr 400 300 200
10% test TEST C 90% test
60 50 40 30 20 10 0 EON -10 0.25
400 300 200 100 0 -100 -5.70
VCE (V)
10 5 0 -5 -4.20
VCE (V)
5% VCE
100 0 -100 -0.15
5% VCE
EOFF Loss -5.20 -4.70
-0.05
0.05 Time (s)
0.15
Time(s)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175C using Fig. CT.4
30 20 10 0 -10 -20 -30 -40 -0.05 Peak IRR
10% Peak IRR
500
250
QRR tRR
400 VCE 300 ICE VCE (V) 200
200
150 ICE (A)
IRR (A)
100
100
50
0
0
0.05 time (S)
0.15
-100 -5.00
0.00
5.00
-50 10.00
time (S)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform @ TJ = 25C using Fig. CT.3
www.irf.com
9
IRGB4061DPBF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
10- For the most current drawing please refer to IR website
at http://www.irf.com/package/pkigbt.html
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE AS S EMBLY LINE "C" Note: "P" in as sembly line position indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C
TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/07
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRGB4061DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X